Examples of Mochi services

HEPNOS, FlameStore, anad
Mobject

@ Mochi Bootcamp
September 24-26,2019

Methodology for designing a data service

Data model Data organization Composition glue Runtime
Access Metadata code Service
pattern organization APl implementation providers

Guaranties User interface

ldentifying application needs

Which data model?

e Arrays, meshes, objects...
e Namespace, metadata

Which access pattern?

e Characteristics (e.g. access sizes)
e Collective/individual accesses

Which guarantees?

e Consistency
e Performance
e Persistence

ldentifying application needs

Which data model? e How should data be organized?

e Sharding
e Distribution
e Replication

e Arrays, meshes, objects...
e Namespace, metadata

Which access pattern?
e How should metadata be organized?

e Distribution
e Content
¢ [ndexing

e Characteristics (e.g. access sizes)
e Collective/individual accesses

Which guarantees?

e How do clients interface with the service?
e Programming language
e API

e Consistency
e Performance
e Persistence

HEPNOS: A Storage
Service for High Energy

Physics Applications

Storing “Products”

class Collision {
double energy;
std: :array<double,3> position;

¥;

Data Model
e Many instances of small C++ objects

e Hierarchy of datasets, runs, subruns, and events
e Products accessible by “tag”

Access Pattern
e Write-once, read-many
e Products accessed atomically
e Access by “tag” and by type
e |terators to navigate the hierarchy

Envisioned usage

e Long-running (weeks), resizable cache based on fast,
in-compute-node storage (SSDs, NVRAM, local memory)

e Accessed by multiple applications concurrently

e Backed-up by a more permanent storage system (parallel file
system, archive system, object store) when undeployed

Figuring out service requirements

Interface

e C++interface with integrated serialization
e Need for batching features and non-blocking transfers

Backend
e Distributed key/value store
e Objects small enough not to be sharded
e Noreplication needed
e Nooverwrite allowed

Organization

e Path-like namespace
e Hashing function mapping paths to target

1
o

G o e e e o o O R R R RS e MEE RSN RSN RSN RS R B MEE MEE MEE REE S R S e e e e

RPC

RDMA ———»

Example of HEPNOS's interface

hepnos: :DataStore datastore("config.yaml");

hepnos::DataSet ds = datastore["path/to/dataset"”];
hepnos: :Run run = ds[43];

hepnos: :SubRun subrun = run[56];

hepnos: :Event ev = subrun[25];

for(auto& subrun : run) { ... }

e Map-like access to the hierarchy of datasets, runs, subruns, and events
e Iteratorsto navigate the hierarchy

10

Example of HEPNOS's interface

struct Particle {
float x, y, z;

template<typename A>
void serialize(A& a, unsigned long version) {
ar & x & y & z;

}s
hepnos::Event ev = subrun[25];

st::vector<Particle> vpl = ..
ev.store("mylabel", vpl);

<5

std::vector<Particle> vp2;
sv.load("mylabel"”, vp2);

e Serialization based on Boost
e Load/Store functions

11

12

FlameStore: a Storage
Service for Deep
Learning Workflows

N\
\

Storing neural networks

Data Model
e Large weight matrices
e Neural network architecture

Access Pattern
e Not many neural networks
e Writes, updates, and reads
e Neural networks accessed atomically
[J
[

Access by name within a flat namespace
The application is not I/O bound

13

Envisioned usage

e Workflow running for a few hours to a few days
e Storage system spanning the workflow allocation

e Backed-up by a more permanent storage system (parallel file
system, archive system, object store) when undeployed

14

Figuring out service requirements

Interface

e Pythoninterface easy to use with Keras
e Need for efficient access to tensors memory

Backend
e Single key/value store for metadata
e Distributed blob storage w/ efficient bulk transfers
e Noreplication needed
e Overwrite allowed

Organization

e Flat namespace
e Hashing function mapping name to target

15

16

1
o

G o e e e o o O R R R RS e MEE RSN RSN RSN RS R B MEE MEE MEE REE S R S e e e e

RPC

RDMA ———»

Example of FlameStore's interface

with Engine('tcp', use progress_thread=True, mode=pymargo.client) as engine:
client = Client(engine)
provider = client.lookup(provider _addr, provider_id)

callback

= RemoteCheckpointCallback(model name='MyModel',
client=client, provider_addr=provider_addr,
provider id=provider_id))
model = ...

model.fit(... callbacks=[callback])

model = client.load model(provider, 'MyModel')
optimizer = client.load_optimizer(provider, 'MyModel')

e Integrates with Keras code through the callback interface
e Enables checkpointing the optimizer in addition to weights
e Recordsthe model’s architecture using JSON

17

18

Mobject: an Object

Storage Service tailored
for HPC

N\
\

19

Storing objects for HPC

Data Model

Mimic the RADOS data model

Obijects are byte arrays identified by unique names
Objects can be written incrementally by many processes
Associate key/val attributes with objects

Access Pattern

Objects will be accessed/updated concurrently, by potentially
many processes

Object accesses tend to be large & aligned, but small strided
accesses critical to performance

Accessed directly by apps and by middleware systems

Expect a mix of read and write

Envisioned usage

e In-system object store deployed alongside application(s) as

primary |/O provider
o Dedicated nodes or co-located with app nodes

e Typically backed by persistent memory devices, but can also offer

in-memory object storage
o Similar to prior examples, mechanisms exist to migrate to

more appropriate levels in the storage hierarchy

20

Figuring out service requirements

Interface

e Cinterface implementing a subset of the RADOS API
e Simple POSIX-like API for accessing object extents

Backend
e Distributed blob storage w/ efficient bulk transfers
e Distributed metadata w/ a kv per blob store
e Log-structured object storage abstraction
e Noreplication

Organization

e Flat namespace
e Hashing function mapping name to target

21

22

Application Process
Object API
Object Client

Client
Memory

Application
node

Object Provider
Bake ,

Provider
3

PMDK or
POSIX

Object provider
node

KV Provider

DB (e.g.,
LevelDB)

23

Example of Mobject'’s interface

{

rados_write _op_t create_op;

rados_op = rados create write op();
rados_write op create(rados_op, LIBRADOS CREATE_IDEMPOTENT, NULL);
rados_write_op_write(write_op, (const char *)buffer, length, offset);
... /* more operations */
ret = rados_write_op operate(rados_op, rados_ioctx, object name, NULL, 9);
rados_release write op(rados_op);
if (ret)
fprintf(stderr, "unable to create RADOS object", ret);

e Simple, POSIX-like create/read/write interface for accessing object data
e Implements the RADOS write_op and read_op interfaces, allowing clients to submit lists
of I/O operations for a given object

Mobject performance results

Mobject-Kove
Mobject-tmpfs s—e—

FS —e—s

e Using IOR (with RADOS backend)
as a driver, compare a couple of
different Mobject deployments
against GPFS on Cooley system @ T e
Argonne

o Kove devices are TR
network-attached
persistent memory devices
o tmpfs deployment is directly
to RAM (not persistent)

Write Bandwidth (MiB/s)

Read Bandwidth (MiB/s)

12 24 48 72 96 120 144
Client count

24

